Weighted lens depth: Some applications to supervised classification

نویسندگان

چکیده

Starting with Tukey's pioneering work in the 1970s, notion of depth statistics has been widely extended, especially last decade. Such extensions include those to high-dimensional data, functional and manifold-valued data. In particular, learning paradigm, depth-depth method become a useful technique. this article, we extend lens case data metric spaces study its main properties. We also introduce, for Riemannian manifolds, weighted depth. The is nothing more than version distance. To build it, replace geodesic distance on manifold Fermat distance, which important property taking into account density together Next, illustrate our results some simulations interesting real datasets, including pattern recognition phylogenetic trees, using approach. La de profondeur statistique émergé dans les années 70 un travail pionnier Tukey. Cette très largement été étudiée et étendue la dernière décennie. Certaines ces concernent données en grande dimension, fonctionnelles ou à valeurs sur une variété. En apprentissage machine, méthode classification utilisant le vote par (depth-depth), est utilisée. Dans cet nous étendons lentille (lens depth) pour des espace métrique étudions principales propriétés cette extension. Nous introduisons également, cas d'une variété riemannienne, pondérée. aussi pondérée riemannienne. seconde extension, remplace géodésique Fermat. Cela permet ainsi prendre compte densité probabilité observations. illustrons nos résultats synthétiques réelles. particulier, appliquons outils développés problème reconnaissance formes d'arbres phylogéniques. Please note: publisher not responsible content or functionality any supporting information supplied by authors. Any queries (other missing content) should be directed corresponding author article.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially supervised classification using weighted unsupervised clustering

This paper addresses a classification problem in which class definition through training samples or otherwise is provided a priori only for a particular class of interest. Considerable time and effort may be required to label samples necessary for defining all the classes existent in a given data set by collecting ground truth or by other means. Thus, this problem is very important in practice,...

متن کامل

Influence functions of some depth functions, and application to depth-weighted L-statistics

Depth functions are increasingly being used in building nonparametric outlier detectors and in constructing useful nonparametric statistics such as depth-weighted L-statistics. Robustness of a depth function is an essential property for such applications. Here, robustness of three key depth functions, the spatial, simplicial, and generalized Tukey, is explored via the influence function (IF) ap...

متن کامل

Local nearest neighbour classification with applications to semi-supervised learning

We derive a new asymptotic expansion for the global excess risk of a local k-nearest neighbour classifier, where the choice of k may depend upon the test point. This expansion elucidates conditions under which the dominant contribution to the excess risk comes from the locus of points at which each class label is equally likely to occur, but we also show that if these conditions are not satisfi...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Weighted halfspace depth

Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian journal of statistics

سال: 2022

ISSN: ['0319-5724', '1708-945X']

DOI: https://doi.org/10.1002/cjs.11724